

Communication Data.

M&C Group of Companies. An overview.

▼ M&C TechGroup Germany GmbH

Site Ratingen Group Head Office

Location Rehhecke 79, 40885 Ratingen, Germany
Mail P.O. Box 10 42 24, 40853 Ratingen, Germany

Fon +49 2102 935-0
E-mail info@mc-techgroup.com

Site Aach Group Factory Aach (M&C TechGroup Germany GmbH)

Location Im Hirtenstall 9, 78267 Aach, Germany

▼ M&C Worldwide - Subsidiaries

M&C TechGroup MechParts GmbH Aach, Germany +49 2102 935-0 info@mc-techgroup.com +49 2102 935-0 M&C TechGroup Gentics GmbH Ratingen, Germany gentics@mc-techgroup.com M&C TechGroup NorthAmerica Ventura, CA +1 805 654 6970 info-usa@mc-techgroup.com M&C TechGroup China Co. Ltd. Shanghai +86 21 64 41 9350 info-china@mc-techgroup.com +91 954 572 5252 M&C TechGroup India Pune info-india@mc-techgroup.com M&C TechGroup MiddleEast FZCO UAE- Dubai +971 43 235 855 info-uae@mc-techgroup.com

M&C TechGroup Rus

▼ Sales Areas Germany/Austria/Switzerland

Hamburg/Dessau +49 171 76 45 682 oliver.arlt@mc-techgroup.com Dusseldorf Manfred Reinelt +49 171 76 45 684 manfred.reinelt@mc-techgroup.com Frankfurt Main Roland Walterham +49 171 76 45 686 roland.walterham@mc-techgroup.com Stuttgart/Switzerland Jürgen Hommel +49 171 76 45 687 juergen.hommel@mc-techgroup.com Ulrich Offner +49 171 76 45 688 Munich/Austria ulrich.offner@mc-techgroup.com

▼ M&C International Sales – Offices

France Frédéric Perret & Team +33 472 670 840 frederic.perret@mc-techgroup.com Belgium (fr)/Luxembourg Frédéric Perret & Team +33 472 670 840 frederic.perret@mc-techgroup.com Netherlands/Belgium (fl) Jörg Behrens +49 151 1674 7533 joerg.behrens@mc-techgroup.com Great Britain/Ireland Michael Davies +44 780 926 6658 michael.davies@mc-techgroup.com +39 342 579 1368 Italy Enrico Perrone enrico.perrone@mc-techgroup.com César Salvador +34 607 246 549 Spain cesar.salvador@mc-techgroup.com

▼ M&C International Sales - Regional Management

South Europe/AfricaFrédéric Perret+33 622 858 683frederic.perret@mc-techgroup.comScandinaviaJörg Behrens+49 151 1674 7533joerg.behrens@mc-techgroup.comAsia/Pacific areaThibault Taffonneau+49 171 86 68 165thibault.taffonneau@mc-techgroup.com

▼ Strategic Market Relations

Globally Marcel Hengst +49 170 63 49 107 marcel.hengst@mc-techgroup.com

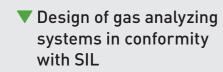
Additionally

Detailed information at

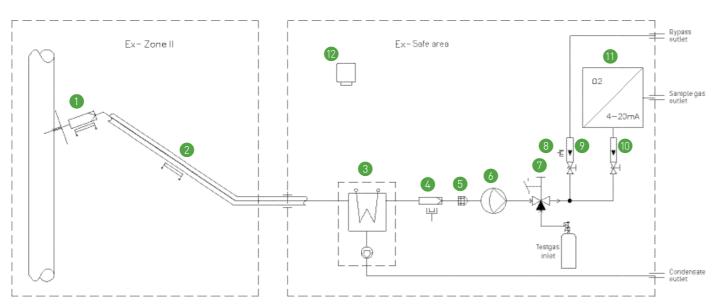
Distributors Various other countries

www.mc-techgroup.com

SIL – Safety Integrity Level


Certified Conformity. Now also for complete systems.

Safety Integrity Level.


Functional Safety. Now also for gas analyzing systems.

- ► Functional safety for complex systems according to DIN EN 61508
- ► Control of oxygen concentration (UEG/0EG)

- Gas sample probe SP3200/Ex
- 2 Heated line 120 °C
- 3 Gas cooler ECM-Ex2-2 with peristaltic pump SR25.2
- 4 Filter FSS-2T with liquid alarm
- 5 Flame arrestor F.4.7000.40IIC
- 6 Sample gas pump MP47

- 7 Ball valve with position identification
- 8 Flow rate prealarm FA
- 9 Flow meter bypass FM10
- 10 Flow meter sample gas FM10
- 11 Oxygen analyzer PMA30-SIL
- 12 LEL sensor in cabinet

▼ Dangerous failure: Oxygen signal is too small

Component	Nr.	Failure class	su	sd	dd	du	Number of inci- dents for rate	supposed incidents	Operating time in years
Probe	1.2	sd		8,65E-03			3		347
Line	2.1	su	5,28E-03					33	6252
Cooler	3.1 – 3.3	dd			3,02E-02		50		1658
Sample gas pump	6.4	dd			2,68E-02		8		298
PMA30 hazardous, if O ₂ is too small	9		3,21E-03	3,00E-06	3,64E-03	6,19E-04			
						6,19E-04			

			1,24E-03	Safety factor:	3
8,484E-03	8,649E-03	6,065E-02	1,86E-03	SFF	97,67 %
9,685E-07	9,873E-07	6,923E-06	2,121E-07	T1 (1 year) in h	8760
	d = dd + du	7,135E-06		MTTR in h	72,00
				PFD	1,443E-03

Sum PDF	1,443E-03

▼ Dangerous failure: Oxygen signal is too large

Sum failure rates

Component	Nr.	Failure class	su	sd	dd	du	Number of inci- dents for rate	supposed incidents	Operating time in years
Probe	1.2	sd		8,65E-03			3		347
Line	2.1	su	5,28E-03					33	6252
Cooler	3.1 - 3.3	dd			3,02E-02		50		1658
Sample gas pump	6.4	dd			2,68E-02		8		298
PMA30 hazardous, if 0 ₂ is too small	9		3,58E-03	3,00E-06	3,64E-03	2,44E-04			

2,44E-04 4,87E-03 Safety factor::	
C = ()	3
C = (-1) = -1 = [1/1] 0.0000/4151 0.000//0520 0.0/0////1 7.245 0/ CFF	
Sum failure rates [1/a] 0,008861151 0,008648529 0,06064661 7,31E-04 SFF	99,07 %
[1/h] 1,012E-06 9,873E-07 6,923E-06 8,340E-08 T1 (1 year) in h	8760
d = dd + du 7,007E-06 MTTR in h	72,00
PFD 8	698E-04
Sum PDF 8	698E-04

2 | 3

SIL - Safety Integrity Level

Novelties regarding the SIL certification of products and systems.

SIL certified products

SIL certified oxygen analysor PMA30.

- ▶ PMA 30
- NE 21 certified
- DIN EN 61508 certified as device type B
- SIL-Level 2
- Declaration/statement of conformity issued by independent authorized experts available
- ATEX-certified analysor PMA50Ex also according to SIL2!

SIL certified systems

Functional safety for complete analysing systems according to DIN EN 61508.

- Complete systems for oxygen measurement (UEG/OEG) incl. gas sampling and conditioning
- ► Hazard analyse of the user is taken into account
- ► System construction according to measuring task
- Selection of components based on FMEDA-calculation/M&C-data base
- ► SFF und PFD-values

Systems in conformity with SIL according to DIN EN 61508.

Description/Handling

- ▶ The background is DIN EN 61508, systems are considered as equipment type B.
- Description of the measuring task and derivation of the Safety Instrumented Function (SIF).
- ▶ Consideration of the requirements out of the user's risk-/hazard analysis (HAZOP).
- ▶ Definition of the intended use.
- ▶ Selection of appropriate components, if possible certified according to SIL.
- ▶ Based on FMEDA calculation and the M&C data bank (failure statistic).
- ▶ If no analysis of failure mode is possible, the allocation of hazardous/non hazardous failures are evaluated.
- ▶ Identification and classification of possible failures on devices/components within the safety chain.
- ▶ Determination of the failure rates su, sd, dd, du, description of the failure consequences.
- ▶ Specification of appropriate countermeasures, arrangement of supporting diagnosis features.
- Calculation of the Probability of Failure on Demand (PFD) and Safety Failure Fraction (SFF).
- ▶ Determination of the SIL level by weighting 35 % for measurement technique, 15 % for process control, 50 % for actuating elements and inclusion of a reasonable safety factor.

Conclusion

SIL is an important addition to the measurement system performance confidence.